skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Shen, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high‐quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3(STO), MgO, LaAlO3, a‐Al2O3,and many others. Recent successes in transferring these complex oxides as free‐standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost‐effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high‐resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre‐strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high‐quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices. 
    more » « less
  2. Large language models have gained significant popularity and are often provided as a service (i.e., LLMaaS). Companies like OpenAI and Google provide online APIs of LLMs to allow downstream users to create innovative applications. Despite its popularity, LLM safety and quality assurance is a well-recognized concern in the real world, requiring extra efforts for testing these LLMs. Unfortunately, while end-to-end services like ChatGPT have garnered rising attention in terms of testing, the LLMaaS embeddings have comparatively received less scrutiny. We state the importance of testing and uncovering problematic individual embeddings without considering downstream applications. The abstraction and non-interpretability of embedded vectors, combined with the black-box inaccessibility of LLMaaS, make testing a challenging puzzle. This paper proposes COSTELLO, a black-box approach to reveal potential defects in abstract embedding vectors from LLMaaS bycontrastive testing. Our intuition is that high-quality LLMs can adequately capture the semantic relationships of the input texts and properly represent their relationships in the high-dimensional space. For the given interface of LLMaaS and seed inputs, COSTELLO can automatically generate test suites and output words with potential problematic embeddings. The idea is to synthesize contrastive samples with guidance, including positive and negative samples, by mutating seed inputs. Our synthesis guide will leverage task-specific properties to control the mutation procedure and generate samples with known partial relationships in the high-dimensional space. Thus, we can compare the expected relationship (oracle) and embedding distance (output of LLMs) to locate potential buggy cases. We evaluate COSTELLO on 42 open-source (encoder-based) language models and two real-world commercial LLMaaS. Experimental results show that COSTELLO can effectively detect semantic violations, where more than 62% of violations on average result in erroneous behaviors (e.g., unfairness) of downstream applications. 
    more » « less
  3. Abstract Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al92Ti2Fe2Co2Ni2is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al9Co2type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing. 
    more » « less